Firm Responses to Book Income Alternative Minimum Taxes

Jordan Richmond, Princeton University

March 6, 2022

Introduction

- In 2018 Amazon had \$10 billion in income, paid 0 taxes
- Deductions and credits mean to incentivize productive economic behavior reduce tax bills, sometimes all the way to 0
- Alternative minimum taxes (AMTs) assign lower rate to broader base excluding many deductions and credits
 - Raise revenue from profitable firms
 - Limit economic incentives
- Renewed interest in using book income as AMT base (Biden tax plan, OECD negotiations for global minimum tax)

1

Research Question

- How do firms respond to an AMT on book income?
 - ▶ How elastic is a book income tax base?
 - ▶ Do firms manage their earnings to avoid an AMT on book income?
 - ▶ Does an AMT on book income distort production or investment?

This Paper

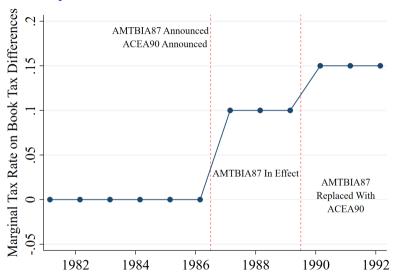
- Event study exploiting 1987 introduction of AMT book income adjustment (AMTBIA87)

 - ► Compare firms with low pre-period effective tax rates (ETRs) facing AMTBIA87 to firms with higher pre-period ETRs that do not
 - ▶ Treatment: ETR < 23%, Control: $ETR \ge 23\%$ ▶ Derivation
 - ▶ Average ETR over 1984-86 for firms with persistently low ETRs

Findings

- Book income tax base is not responsive to AMTBIA87, firms do not manage their earnings
 - $arepsilon^{BI,TB} \in$ [-0.73,0.46] and $arepsilon^{BI,EM} \in$ [-0.87,0.50] over 3 years
- No evidence of production or investment distortions
 - ▶ Investment response per 1% increase in tax rate ∈ [-0.48%,0.21%]
- Tax increase is salient
 - ightharpoonup Tax liabilities increase by 0.29% of lagged assets over 3 years

4


Literature Review

- Firm responses to AMTBIA87 Gramlich 1991, Dhaliwal and Wang 1992, Boynton Dobbins and Plesko 1992, Manzon 1992, Wang 1994, Choi et al. 2001, Dharmapala 2020
 - Zero avoidance responses because I account for mean reversion
- Mitigating incentives in corporate taxation Burgstahler and Dichev 1997, Graham et al. 2005, Desai and Dharmapala 2006, Bergstresser and Phillipon 2006, Yu 2008, Terry 2017, Terry et al. 2021
 - ▶ Non-tax incentives to report high book incomes mitigate avoidance responses
- Broad-based taxes, evasion and avoidance Diamond and Mirrlees 1971, Best et al. 2015, Mosberger 2016, Alejos 2018, Almunia and Lopez-Rodriguez 2018, Lobel et al. 2020, Bachas and Soto 2021
 - ▶ Taxes on book income can raise revenue while mitigating avoidance

Outline

- Policy
- 2 Avoidance Responses
 - Model
- Opening and Investment Responses
- Revenue Simulations
- Conclusion

Minimum Tax Policy Timeline

Book Tax Differences

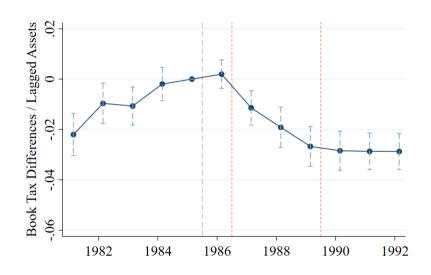
Permanent BTDs	Book Income	Taxable Income
State & Local Taxes	No	Yes
Tax Exempt Income	Yes	No
Fines	Yes	No
Meals & Entertainment	100%	50%
Interest on Govt Bonds	Yes	No
Temporary BTDs	Book Income	Taxable Income
Depreciation	Straight Line	Accelerated
Mark to Market	Yes	No
Rental Income	Smooth	Year of Contract
Bad Debts	Estimated on Issue	When Realized

Quasi-Experimental Set Up

- ullet Event study where treatment firms have $ETR_{84-86} < 23\%$
- \bullet ETR mechanically and negatively related to BTD tax base
- ullet Mean reversion: expect some increase in ETR, and decrease in BTD, for low ETR treatment firms
 - ► Isolate mean reversion due to treatment definition from tax avoidance responses to AMTBIA87

Placebo-In-Time Approach

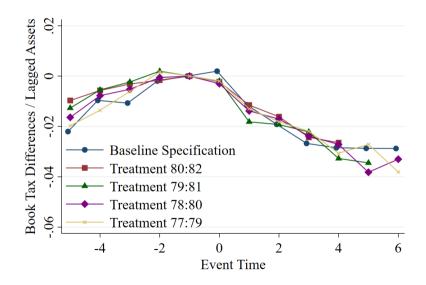
- Compare BTD response to treatment based on ETR_{84-86} to BTD response based on ETR in earlier years
 - Assumption: the time series process of ETR, and its impact on BTD, is stable
 - * Cannot reject null that ETR autocovariances are same before and after AMTBIA87 at 1, 2 and 3 lags Autocovariance Tests
 - * Distributed lag regressions of ΔBTD on ΔETR yield same coefficients for treatment firms before and after AMTBIA87 Dist Lag Regs
 - \star ETR mean reversion is stable before and after policy

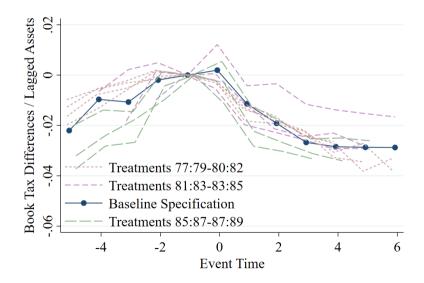

Placebo-in-Time Approach: Standard Event Study

Estimate standard event study

$$Y_{it} = \sum_{\tau = -5, \tau \neq -1}^{6} (\beta_{\tau} \cdot Treat_{i\tau}) + \rho X_{it} + \delta_{t} + \gamma_{i} + \varepsilon_{it}$$

- $Treat_i = 1$ in post-period if $ETR_{84-86} < 23\%, 0$ otherwise
- $Treat_{i\tau}$ is interaction of $Treat_i$ with event time dummies
- $\bullet \ \tau = 0 \text{ is } 1986$


Book Tax Differences Response to Baseline Treatment

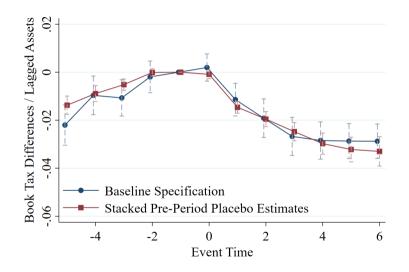

Placebo-in-Time Approach: Counterfactuals

- Estimate same event study specification using treatment definitions based on earlier years
 - ▶ Use balanced Compustat panel 1974-1986
 - \blacktriangleright Use treatment definitions based on ETR in 77-79, 78-80, 79-81, 80-82
 - Event time $\tau = 0$ is last year in treatment definition

Book Tax Differences Response to Baseline and Placebo Treatments

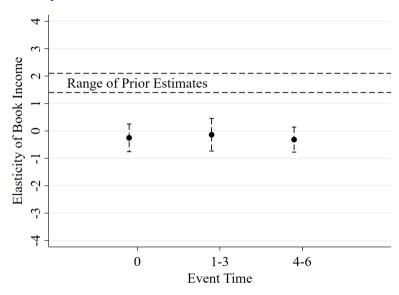
Book Tax Differences Response to Baseline and Placebo Treatments

Placebo-in-Time Approach: Stacked Event Study

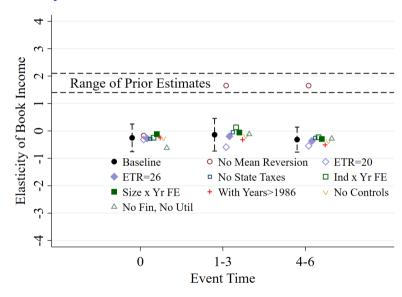

- \bullet Average over treatment definitions based on ETR in 77-79, 78-80, 79-81, 80-82, 81-83, 82-84, 83-85
 - Event time $\tau = 0$ is last year in treatment definition
 - ▶ Append 1 data set for each treatment, estimate stacked event study in pre-reform years

$$Y_{itd} = \sum_{\tau = -5}^{6} \frac{1}{\tau + -1} \left(\eta_{\tau} \cdot Treat_{i\tau d} \right) + \psi Treat_{id} + \rho X_{itd} + \delta_t + \gamma_i + \varepsilon_{itd}$$

ullet BTD response of interest is $eta_{ au}-\eta_{ au}$, rescale to elasticity and bootstrap standard errors

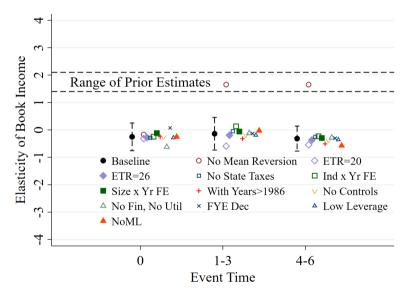

$$\varepsilon_t^{BI} = \left(\frac{\beta_t}{\bar{B}I_\beta} - \frac{\eta_t}{\bar{B}I_\eta}\right) \cdot \frac{1 - \tau}{\Delta(1 - \tau)}$$

Book Tax Differences Baseline and Stacked Event Study


Tax Base Elasticity Estimates

Book Tax Differences Mean Reversion

- \bullet $\varepsilon^{BI,TB} \in [-0.73,0.46]$ over 1987-1989
- Difference with prior estimates explained by mean reversion
- Difference not driven by controls, tax base measurement error, size or industry time trends, choice of placebo, finance or utility firms


Tax Base Elasticity Estimates

Why are there no avoidance responses to AMTBIA87?

- Tax liability increases by 0.29% of lagged assets
- No permanent BTD avoidance
- Little heterogeneity across industry or firm sizes BTD Heterogeneity
- No avoidance dropping multinationals and loss firms
- No avoidance restricting to firms with December fiscal year-ends
- No avoidance restricting to low leverage firms

Tax Base Elasticity Estimates

Model of Firm Behavior

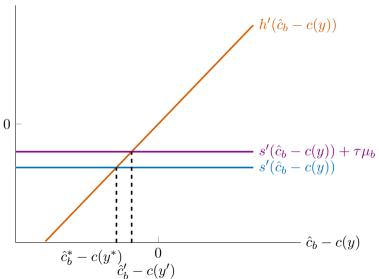
- Firms choose output y with convex costs c(y)
- Fraction of costs deductible for book and tax purposes (μ_b, μ_t) imply book income $y \mu_b c(y)$ and taxable income $y \mu_t c(y)$
- Firms can lie about costs $\hat{c}_t \neq c(y), \hat{c}_b \neq c(y)$, and pay convex penalties for misreporting $g(\hat{c}_t c(y)), h(\hat{c}_b c(y))$
- Firms can manipulate stock price $s(\hat{c}_b c(y))$ with s'() < 0

Model of Firm Behavior

• Firm problem taxing taxable income:

$$\max_{y,\hat{c}_t,\hat{c}_b} (1-\tau)y - c(y) + \tau \mu_t \hat{c}_t - g(\hat{c}_t - c(y)) - h(\hat{c}_b - c(y)) + s(\hat{c}_b - c(y))$$

$$g'(\hat{c}_t - c(y)) = \tau \mu_t$$

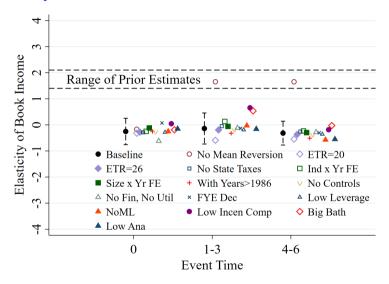

$$h'(\hat{c}_b - c(y)) = s'(\hat{c}_b - c(y))$$

$$c'(y) = 1 - \tau \frac{1 - \mu_t}{1 - \tau \mu_t} \equiv 1 - \tau_{E,t}$$

Firm problem taxing book income:

$$\begin{aligned} \max_{y,\hat{c}_t,\hat{c}_b} \ &(1-\tau)y - c(y) + \tau \mu_b \hat{c}_b - g(\hat{c}_t - c(y)) - h(\hat{c}_b - c(y)) + s(\hat{c}_b - c(y)) \\ &g'(\hat{c}_t - c(y)) = 0 \\ &h'(\hat{c}_b - c(y)) = s'(\hat{c}_b - c(y)) + \tau \mu_b \\ &c'(y) = 1 - \tau \frac{1 - \mu_b}{1 - \tau \mu_b} \equiv 1 - \tau_{E,b} \end{aligned}$$

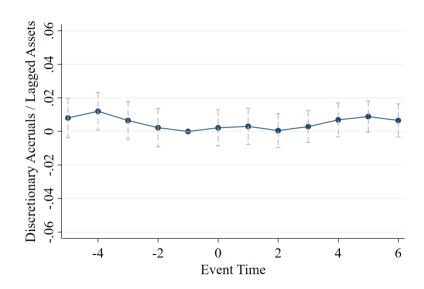
Model of Marginal Firm Behavior

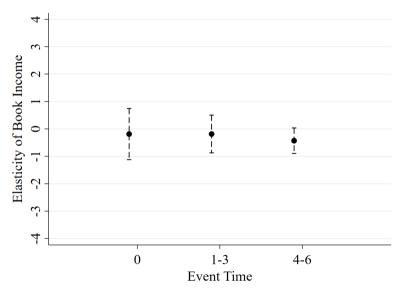

Model Takeaways

- Large avoidance responses if tax incentive dominates stock incentive
- Large literature suggests stock incentive is strong:
 - Managers focus on reporting high earnings
 - Bunching at past earnings, 0 earnings, and analyst targets
 - ► Firms willing to pay additional tax on fraudulently high earnings
 Graham et al. 2005, Burgstahler and Dichev 1997, Terry 2017, Erickson et al. 2004
- Suggests we should observe more avoidance among firms with fewer incentives to report high earnings

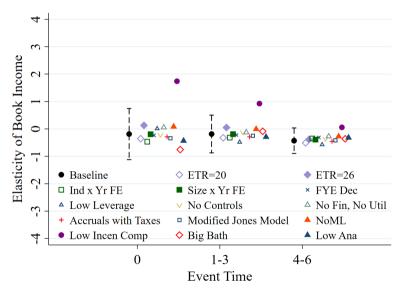
Firms With Weaker Incentives to Report High Book Income

- Less incentive-based compensation
- Missing past earnings by large margins
- Less analyst coverage

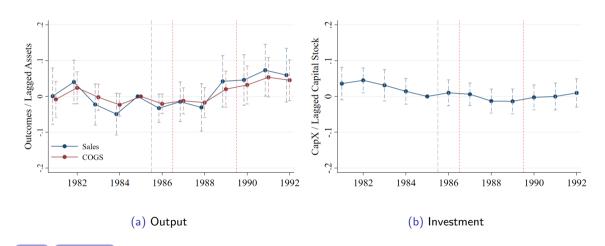

Tax Base Elasticity Estimates


Earnings Management Responses

- BTD measure earnings management and tax planning behavior Single Year Treatment
- Do firms manage their earnings? Use discretionary accruals
 - Accruals: income for which cash has not yet been exchanged
 - Residualize on current economic conditions
- No mechanical relationship with treatment definition Mean Reversion


Earnings Management Responses

Earnings Management Elasticity Estimates


Earnings Management Elasticity Estimates

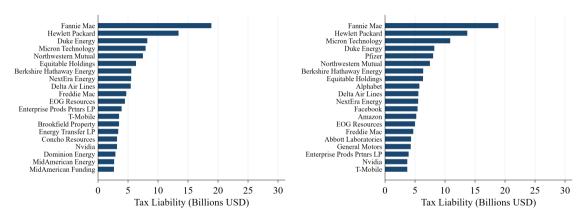
Discretionary Accrual Responses

- Focusing specifically on earnings management
- No mean reversion concerns, no taxable income shifting concerns
- ullet $\varepsilon^{BI,EM} \in [-0.87,0.50]$ over 1987-1989

Production and Investment Responses

Output and Investment Responses

- ullet Reject output declines > 1% per 1% change in the tax rate
- ullet Reject investment declines > 0.5% per 1% change in the tax rate
- ullet Consistent with model prediction that small change in effective tax rate au_E leads to small change in output


Policy

- Project revenue implications of proposed policy
 - ▶ 15% minimum tax on book income for firms with >\$100M in income
 - ► Assume book income elasticities and project revenues over 10 year scoring window ▶ Details
 - Assume 30% of tax liability recovered via credits
 - Firms can reduce tax liability with foreign tax credits and net operating loss deductions

Revenue Scores

Panel A: Baseline Scenarios	(1) Revenue	(2) Top 10	(3) Util	(4) Manf	(5) Fin	(6) Tran
S1: $\varepsilon_t = \{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	336	83	81	75	46	36
S2: $\varepsilon_t = \{0.0, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0\}$	294	76	73	64	40	32
S3: $\varepsilon_t = \{0.5, 0.5, 1.0, 1.0, 1.0, 1.5, 1.5, 1.5, 2.0, 2.0\}$	273	72	68	58	38	30
S4: $\varepsilon_t = \{1.0, 2.0, 3.5, 4.0, 4.5, 5.0, 5.0, 5.0, 5.0, 5.0\}$	167	51	43	32	28	17
Panel B: No FTC Scenarios	Revenue	Top 10	Util	Manf	Fin	Tran
S1: $\varepsilon_t = \{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	416	91	82	86	81	39
S1: $\varepsilon_t = \{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	416 363	91 83	82 74	86 73	81 71	39 34
			~ _	0.0		

Largest Firm Liabilities

(a) Biden Book Income AMT

(b) Without Foreign Tax Credits

Revenue Scores

- Lots of firms have divergent book income and tax liabilities
- Breadth of tax base can restrict revenue, firms that pay
- ullet Using prior elasticity estimates reduces revenue by pprox 20%

Conclusion

- Estimate zero book income, earnings management and production/investment responses to AMTBIA87
 - ► Lower than previous work because I account for mean reversion
 - ▶ Non-tax motivations to report high book incomes mitigate avoidance
- Existing revenue scores of proposed book income AMTs underestimate revenues by using larger elasticities
- Is a book income AMT "good policy"?
 - Depends on strength of incentives to report high book income
 - ► Should the FASB control the tax base? Impact of special interests? Stability of non-tax incentives?

Appendix

Relating ETRs to AMT Liability

$$BIA = 0.5(BI - (TI + TPA))$$

$$AMT = \max\{0.2(TI + TPA + BIA) - \tau TI, 0\}$$

$$\frac{AMT}{BI} = \max\{0.1 + 0.1f + [(0.1 - \tau) - 0.1f]\frac{TI}{BI}, 0\}$$

$$\frac{AMT}{BI} = \max\{0.1 + 0.1f - [\frac{\tau - 0.1}{\tau} + \frac{0.1f}{\tau}]ETR, 0\}$$

So a firm has positive AMT liability if

$$ETR_{87} < \frac{\tau_{87}(0.1 + 0.1f)}{(\tau_{87} - 0.1) + 0.1f} = 0.2 \implies ETR_{86} < 0.23$$

Summary Statistics

Table 1: Summary Statistics for 1985 Cross Section of Estimation Sample

	Observations	Mean	SD	P10	Median	P90
Lagged Assets	845	2854	5919	52	608	7365
Book Income	845	0.15	0.10	0.06	0.12	0.28
Taxable Income	845	0.11	0.10	0.01	0.09	0.25
Book Tax Differences	845	0.04	0.04	-0.01	0.03	0.08
Discretionary Accruals	845	0.00	0.06	-0.06	0.00	0.07
Sales	845	1.43	1.06	0.43	1.27	2.53
Costs of Goods Sold	845	0.97	0.85	0.23	0.80	1.86
Investment	840	0.23	0.17	0.07	0.19	0.46
Debt	844	0.27	0.10	0.14	0.29	0.39
Depreciation	845	0.05	0.03	0.02	0.04	0.08
Depletion	845	0.01	0.02	0.00	0.00	0.04
Employment	819	11.62	24.26	0.30	3.11	31.30

Deferred Tax Expense

- ullet Firms report BI, current tax expense and deferred tax expense on their financial statements
- $BTD = BI \widehat{TI}$. I estimate $\widehat{TI} = \text{current tax expense}/\tau$
- ullet Temporary BTD reclassify tax expense from current to deferred
 - \blacktriangleright \$100 bonus depreciation in excess of straight line depreciation creates a \$100 BTD and reduces TI by \$100
 - For accounting purposes, the firm should have owed \$100au in current tax expense based on its current period taxable book income
 - ▶ The \$100 τ is recorded as deferred tax expense. It will "come due" in some future period when bonus is less than straight line depreciation

ETR Autocovariance Tests

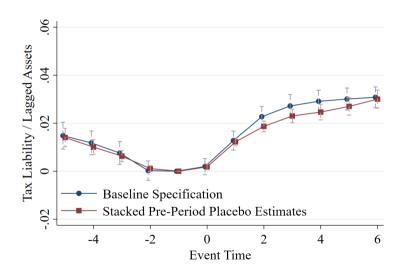
- Under iid sampling and finite fourth moments, vector of variances and autocovariances of ETR, \hat{m} , follows $\sqrt{N}(\hat{m}-m) \to \mathcal{N}(0,V)$, where $\hat{V}=\frac{1}{N}\sum_{i}(m_i-\hat{m})(m_i-\hat{m})'$ is a consistent estimate of V
- ullet Wald test for equality of ETR autocovariances at 1, 2 and 3 lags across all years 1981-1992

$$W = \sqrt{N} \left[R\hat{m} - g \right]' \left(R\hat{V}R \right)^{-1} \left[R\hat{m} - g \right]$$

▶ Quasi-Experimental Set Up → Test Statistics

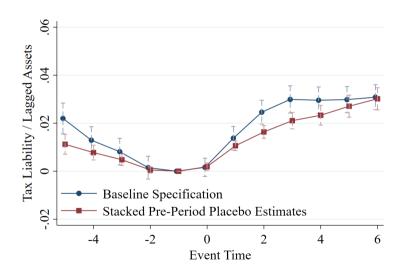
Table: Autocovariance Tests

Hypothesis	DoF	Wald Stat
$Cov(ETR_{t+2},ETR_{t+1}) = Cov(ETR_{t+1},ETR_t) \ \forall \ t \in [1981,1990]$	10	0.89
$Cov(ETR_{t+3}, ETR_{t+1}) = Cov(ETR_{t+2}, ETR_t) \ \forall \ t \in [1981, 1989]$	9	1.39
$Cov(ETR_{t+4}, ETR_{t+1}) = Cov(ETR_{t+3}, ETR_t)) \ \forall \ t \in [1981, 1988]$	8	1.62

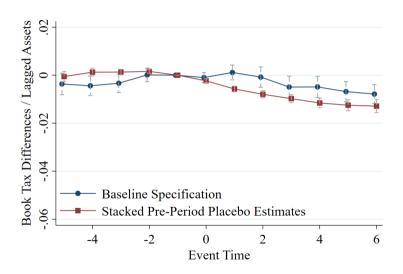

▶ Quasi-Experimental Set Up

Distributed Lag Regressions

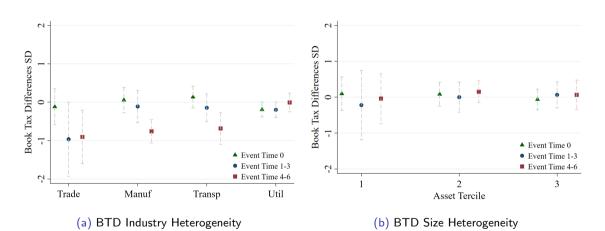
- ullet Does relationship between ETR and BTD change around AMTBIA87?
 - Estimate $\Delta BTD_{it} = \beta_0 \Delta ETR_{it} + \beta_1 \Delta ETR_{it-1} + \Delta \varepsilon_{it}$
 - ► Coefficients same before and after AMTBIA87, using OLS and IV


	OLS	IV
Variable	(1)	(2)
ΔETR_t	-0.12	-0.15
	(0.01)	(0.04)
$\Delta ETR_t \times Post$	-0.01	-0.05
	(0.01)	(0.08)
ΔETR_{t-1}	-0.00	
	(0.01)	
$\Delta ETR_{t-1} \times Post$	-0.00	
	(0.01)	
Observations	1261	1261
Clusters	343	343
F Stat		3.16
LM Stat		5.43

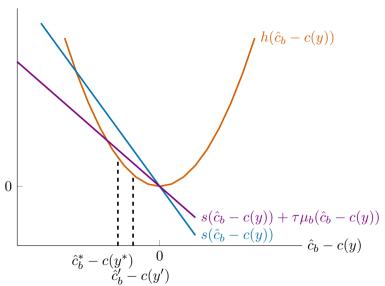
Tax Liability Estimates



Tax Liability Estimates: No Multinationals No Losses



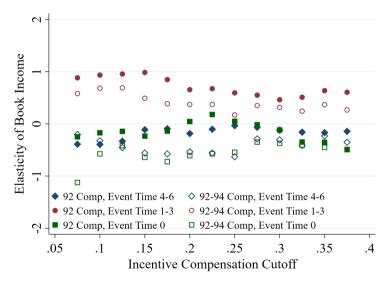
Permanent Book Tax Difference Responses



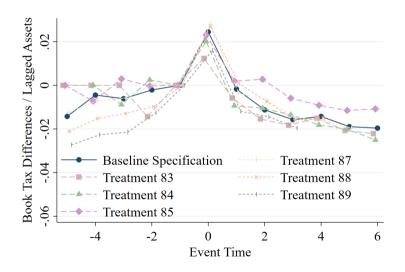
Book Tax Difference Response Heterogeneity



Model of Firm Behavior



Robustness for Tax Base Elasticity Estimates

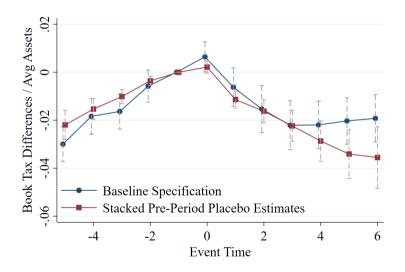


Varying Incentive-Based Compensation Cutoffs

Single Year Treatment Definition

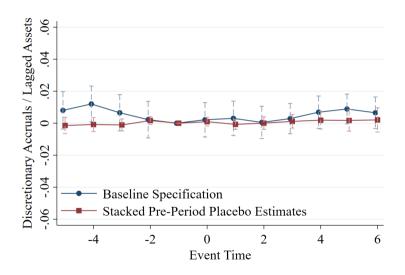
Constructing Discretionary Accruals

- Total accruals: $TA_t = \Delta A_t \Delta Liab_t \Delta Cash_t + \Delta Taxes_t Dep_t$
- Discretionary accruals: residual of a regression of total accruals on assets, change in sales and PPE. "Jones (1991) Model"


$$\frac{TA_{i,t}}{A_{i,t-1}} = \sum_{j=1}^{J} \beta_{1,j} \frac{1}{A_{i,t-1}} + \beta_{2,j} \Delta \frac{Sales_{i,t}}{A_{i,t-1}} + \beta_{3,j} \frac{PPE_{i,t}}{A_{i,t-1}} + \psi_j + \varepsilon_{i,t}$$

$$DA_{i,t} = TA_{i,t} - \widehat{TA_{i,t}}$$

• Run regression on all firms in pre-period, make predictions across full time series


► Earnings Management

Book Tax Differences Baseline and Stacked Event Study

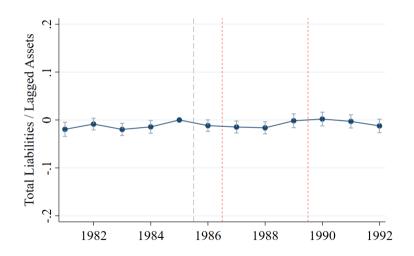
Discretionary Accruals Mean Reversion Test

Incentives

- Stylized firm tax liability is $\max\{\tau_t(y-\mu_t\hat{c}_t), \tau_b(y-\mu_b\hat{c}_b)\}$
- Firms pay minimum tax on BI if $\frac{y-\mu_t\hat{c}_t}{y-\mu_b\hat{c}_b}<\frac{\tau_b}{\tau_t}$ (below cutoff)
- Marginal incentives around the minimum tax cutoff:

FOC	(1) Book Income	(2) Taxable Income
c'(y)	$1- au_{E,b}$	$1- au_{E,t}$
$g'(\hat{c}_t - c(y))$	0	$ au_t \mu_t$
$h'(\hat{c}_b - c(y))$	$s'(\hat{c}_b - c_b(y)) + \tau_b \mu_b$	$s'(\hat{c}_b - c_b(y))$

 Book income tax decreases output, decreases tax evasion, brings book avoidance back towards 0


Model Calibration

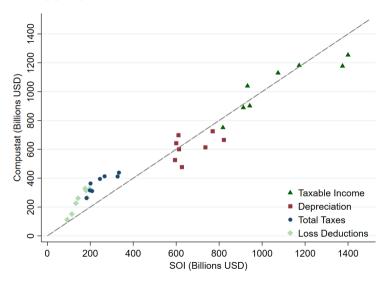
- Requires firm heterogeneity in productivity, ease of tax and book evasion/avoidance, and fixed costs $\{A_i, T_i, B_i, F_i\}$ to rationalize profit and evasion dispersion
- Reasonable to assume constant elasticity production, tax evasion, and book avoidance costs
- ullet Form of stock-based incentives s() unclear Terry, Whited and Zakolyukina (2021)
- Potential weight on stock-based incentives unclear Desai and Dharmapala (2006)

Challenges/Questions

- \bullet Empirical estimates inform elasticities $\varepsilon_y, \varepsilon_{\hat{c}_b-c_b}$
 - Challenge: Interested in level of book AND tax evasion/avoidance with and without BI min tax
 - I measure book avoidance with tax, can maybe use control firms to look at book avoidance without tax?
 - lacktriangle Very difficult to measure evasion/avoidance under TI system, $arepsilon_{\hat{c}_t-c_t(y)}$
 - One possibility: split BTD into accrual component and tax avoidance component (Desai and Dharmapala 2005, 2009), doesn't identify levels
- Functional form for impact of earnings manipulation on stock price?

AMTBIA87 Debt Responses

AMTBIA87 Employment Responses


Scoring the Proposed Biden Book Income AMT

- Use 2018 cross section of Compustat firms present in 2017 and 2018, project income and tax variables over 10 year period using CBO GDP forecasts, incorporate behavioral response estimates into book income projections
- Revenue Scores depend on choice of ε_t

$$BI_{t} = BI_{t}^{mech} + \varepsilon_{t} \cdot BI_{t}^{mech} \cdot \frac{\Delta(1-\tau)}{1-\tau} \cdot \mathbb{1}(T=1)$$

▶ Revenue Score

SOI Compustat Aggregates Comparison

